ing Univa

Aultivariate

Optimizatio

Some applications

Conclusions 0000

Back to the Roots at the occasion of Anders Lindquist 75 !

Philippe Dreesen

Kim Batselier

Bart De Moor

KU Leuven Department of Electrical Engineering ESAT-STADIUS

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	000000000000000	000		0000

Outline

6 Conclusions

Rooting		Optimization	Some applications	Conclusions
000				
(Computational)	algebraic geometry			

- Algebraic Geometry: 'Queen of mathematics' (literature = huge !)
- Computer algebra: symbolic manipulations
- Computational tools: Gröbner Bases, Buchberger algorithm

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
○0●	000000	00000000000000	000		0000
(Computational)	algebraic geometry				

Example: Gröbner basis

Input system:

$$x^{2}y + 4xy - 5y + 3 = 0$$

$$x^{2} + 4xy + 8y - 4x - 10 = 0$$

- Generates simpler but equivalent system (same roots)
- Symbolic eliminations and reductions
- Exponential complexity
- Numerical issues
 - NO floating point but integer arithmetic
 - Coefficients become very large

Gröbner Basis:

$$-9 - 126y + 647y^2 - 624y^3 + 144y^4 = 0$$

 $-1005 + 6109y - 6432y^2 + 1584y^3 + 228x = 0$

Rooting	Univariate	Optimization	Some applications	Conclusions

Outline

- 3 Multivariate
- Optimization
- **5** Some applications

6 Conclusions

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	●00000	00000000000000	000		0000
Fundamental the	eorem of algebra				

• Characteristic Polynomial

The eigenvalues of \boldsymbol{A} are the roots of

$$p(\lambda) = \det(A - \lambda I) = 0$$

• Companion Matrix

Solving

$$q(x) = 7x^3 - 2x^2 - 5x + 1 = 0$$

leads to

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	○●○○○○	00000000000000	000		0000
Fundamental the	eorem of linear algeb	pra			

Consider the univariate equation

$$x^3 + a_1 x^2 + a_2 x + a_3 = 0,$$

having three distinct roots x_1 , x_2 and x_3

$$\begin{bmatrix} a_3 & a_2 & a_1 & 1 & 0 & 0 \\ 0 & a_3 & a_2 & a_1 & 1 & 0 \\ 0 & 0 & a_3 & a_2 & a_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \\ x_1^3 & x_2^3 & x_3^3 \\ x_1^4 & x_2^4 & x_3^4 \\ x_1^5 & x_2^5 & x_3^5 \end{bmatrix} = 0 \qquad \begin{array}{l} \begin{array}{l} \bullet & \text{Banded Toeplitz; linear homogeneous equations} \\ \bullet & \text{Null space: (Confluent)} \\ \bullet & \text{Vandermonde structure} \\ \bullet & \text{Corank (nullity) = number of solutions} \\ \bullet & \text{Realization theory in null space: eigenvalue problem} \end{array}$$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	00●000	00000000000000	000		0000
Two Univariate I	Polynomials				

Consider

$$x^{3} + a_{1}x^{2} + a_{2}x + a_{3} = 0$$
$$x^{2} + b_{1}x + b_{2} = 0$$

Build the Sylvester Matrix:

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	a_1	a_2	a_3	0]			Row Space	Null Space	
$\begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 1\\ b_1\\ 1\\ 0\end{array}$	$\begin{array}{c} a_1\\ b_2\\ b_1\\ 1\end{array}$	$a_2 \\ 0 \\ b_2 \\ b_1$	$\begin{bmatrix} a_3 \\ 0 \\ 0 \\ b_2 \end{bmatrix}$	$\begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}$	= 0	Ideal =union of ideals =multiply rows with pow- ers of x	Variety =intersection of null spaces	

- Corank of Sylvester matrix = number of common zeros
- null space = intersection of null spaces of two Sylvester matrices
- common roots follow from realization theory in null space
- notice 'double' Toeplitz-structure of Sylvester matrix

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000●00	00000000000000	000		0000
Two Univariate	Polynomials				

• Sylvester Resultant

Consider two polynomials f(x) and g(x):

$$f(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$

$$g(x) = -x^2 + 5x - 6 = -(x - 2)(x - 3)$$

 ${\rm Common \ roots \ iff} \ S(f,g)=0$

$$S(f,g) = \det \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}$$

James Joseph Sylvester

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	○○○○●○	00000000000000	000		0000
Two Univariate I	Polynomials				

The corank of the Sylvester matrix is 2!

Sylvester's result can be understood from

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

The vectors in the Vandermonde kernel K obey a 'shift structure':

$$\begin{bmatrix} 1 & 1 \\ x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix} \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \\ x_1^4 & x_2^4 \end{bmatrix}$$

or

$$\underline{K}.D = S_1 K D = \overline{K} = S_2 K$$

The Vandermonde kernel K is not available directly, instead we compute Z, for which ZV = K. We now have

$$S_1 KD = S_2 K$$
$$S_1 ZVD = S_2 ZV$$

leading to the generalized eigenvalue problem

$$(S_2 Z)V = (S_1 Z)VD$$

Rooting 000	Univariate 000000	Multivariate	Optimization 000	Some applications	Conclusions 0000

Outline

3 Multivariate

5 Some applications

6 Conclusions

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	●000000000000000000000000000000000000	000		0000
Macaulay matrix					

Consider

$$\begin{cases} p(x,y) &= x^2 + 3y^2 - 15 = 0\\ q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{cases}$$

- Fix a monomial order, e.g., $1 < x < y < x^2 < xy < y^2 < x^3 < x^2y < \ldots$
- Construct *M*: write the system in matrix-vector notation:

Rooting 000	Univariate 000000	Multivariate o●oooooooooooooo	Optimization 000	Some applications	Conclusions 0000
Macaulay ma	atrix				
			0		
		$p(x,y) = x^2 + 3$	$3y^2 - 15 = 0$		

$$q(x,y) = y - 3x^3 - 2x^2 + 13x - 2 = 0$$

Continue to enlarge M:

it #	form	1	x	y	x^2	xy	y^2	x^3	x^2y	xy^2	y^3	$x^{4}x^{3}yx$	$x^{2}y^{2}x$	$y^{3}y^{4}$	$x^5 x^4 y$	$x^{3}y^{2}x$	${}^{2}y^{3}xy^{4}$	${}^{4}y^{5}$	\rightarrow
d = 3	$\begin{array}{c} p\\ x p\\ y p\\ q\end{array}$	- 15 - 2	- 15 13	$-15\\1$	1		3	1 - 3	1	3	3								
d = 4	$\begin{array}{c} x^2 p \\ xyp \\ y^2 p \\ xq \\ yq \end{array}$		- 2	- 2	- 15 13	- 15 - 1 13	15	- 2	- 2			1 1 - 3 - 3	3 1	3 3					
d = 5	$\begin{array}{c} x^{3} p \\ x^{2} yp \\ xy^{2} p \\ y^{3} p \\ x^{2} q \\ xyq \\ y^{2} q \end{array}$				- 2	- 2	- 2	- 15	- 15 - 1 13	- 15 - 1 13	- 15	- 2	- 2	- 2	1 1 - 3 - 3	3 1 - 3	3 1	3 3	
	\downarrow							۰.	÷.,	·	•				·. ·.	÷.,	·. ·.	 	÷.,

- $\bullet~\#$ rows grows faster than $\#~{\rm cols} \Rightarrow {\rm overdetermined}$ system
- If solution exists: rank deficient by construction!

Rooting		Multivariate	Optimization	Some applications	Conclusions
		00000000000000			
Fundamental Lir	hear Algebra Theore	m and Algebraic Geometry			

Row space:

- ideal; Hilbert Basis Theorem
- Subspace based elimination theory
- Left null space:
 - syzygies, Hilbert Syzygy Theorem
 - Syzygy: numerical linear algebra paper bdm/kb
- Right null space:
 - Variety; Hilbert Nullstellensatz (existence of solutions); Hilbert polynomial (number of solutions = nullity)
 - Modelling the Macaulay null space with nD singular autonomous systems
- Column space: Rank tests: Affine roots, roots at ∞

David Hilbert

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	000●0000000000	000		0000
The singular val	ue decomposition				

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^{t} = \begin{pmatrix} \boldsymbol{U}_{1} & \boldsymbol{U}_{2} \end{pmatrix} \begin{pmatrix} \boldsymbol{S}_{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{V}_{1}^{t} \\ \boldsymbol{V}_{2}^{t} \end{pmatrix}$$

with

$\boldsymbol{U}_1^t \boldsymbol{U}_1 = \boldsymbol{I}_{r_{\boldsymbol{A}}}$	$\boldsymbol{V}_1^t \boldsymbol{V}_1 = \boldsymbol{I}_{r_A}$
$\boldsymbol{U}_2^t \boldsymbol{U}_2 = \boldsymbol{I}_{m-r_A}$	$\boldsymbol{V}_2^t \boldsymbol{V}_2 = \boldsymbol{I}_{n-r_A}$
$\boldsymbol{U}_1^t\boldsymbol{U}_2=\boldsymbol{0}$	$V_1^t V_2 = 0$

Geometry	Basis
R(A)	U_1
$N(\mathbf{A}^{t})$	U_2
$R(\mathbf{A}^{t})$	V ₁
N (A)	V_2

Gene Howard Golub

(Dr. SVD)

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	○○○○●○○○○○○○○○	000		0000
The null space					

• Macaulay matrix *M*:

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \end{bmatrix}$$

• Solutions generate vectors in kernel of M:

MK = 0

• Number of solutions s follows from corank

Francis Sowerby Macaulay

Vandermonde nullspace Kbuilt from s solutions (x_i, y_i) :

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_{1}^{2}	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_{1}^{2}	y_2^2		y_s^2
x_{1}^{3}	x_{2}^{3}		x_s^3
$x_1^2 y_1$	$x_{2}^{2}y_{2}$		$x_s^2 y_s$
$x_1 y_1^2$	$x_2 y_2^2$		$x_s y_s^2$
y_{1}^{3}	y_{2}^{3}		y_s^3
x_1^4	x_2^4		x_4^4
$x_1^3 y_1$	$x_{2}^{3}y_{2}$		$x_s^3 y_s$
$x_1^2 y_1^2$	$x_{2}^{2}y_{2}^{2}$		$x_s^2 y_s^2$
$x_1 y_1^3$	$x_2 y_2^3$		$x_s y_s^3$
y_{1}^{4}	y_2^4		y_s^4
Ŀ	:	÷	:

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	○○○○○●○○○○○○○○	000		0000
Setting up an eig	genvalue problem in	x			

• Choose s linear independent rows in K

S_1K

 $\bullet\,$ This corresponds to finding linear dependent columns in $M\,$

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_{1}^{2}	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_{1}^{2}	y_{2}^{2}		y_s^2
x_1^3	x_{2}^{3}		x_s^3
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$		$x_s^2 y_s$
$x_1 y_1^2$	$x_2 y_2^2$		$x_s y_s^2$
y_1^3	y_2^3		y_s^3
x_1^4	x_{2}^{4}		x_4^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$		$x_s^3 y_s$
$x_{1}^{2}y_{1}^{2}$	$x_{2}^{2}y_{2}^{2}$		$x_s^2 y_s^2$
$x_1 y_1^3$	$x_2y_2^3$		$x_s y_s^3$
y_{1}^{4}	y_{2}^{4}		y_s^4
:	:	:	:
- ·	-	•	· ·

Univariate

Multivariate

Optimizatio

Some applications

Conclusions 0000

Setting up an eigenvalue problem in \boldsymbol{x}

Shifting the selected rows gives (shown for 3 columns)

1	1	1
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
$x_1 y_1$	x_2y_2	x_3y_3
y_1^2	y_{2}^{2}	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_3^3
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2y_2^2$	$x_{3}y_{3}^{2}$
y_1^3	y_2^3	y_3°
x_{1}^{4}	x_{2}^{4}	x_4^4
$x_{1}^{3}y_{1}$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$
$x_{1}^{2}y_{1}^{2}$	$x_{2}^{2}y_{2}^{2}$	$x_{3}^{2}y_{3}^{2}$
$x_1 y_1^{o}$	$x_2 y_2^{o}$	$x_{3}y_{3}^{3}$
y_{1}^{4}	y_{2}^{4}	y_{3}^{4}
:	1 :	:

	1	1 -
x_1	x_2	x_3
y_1	y_2	y_3
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}
x_1y_1	$x_{2}y_{2}$	x_3y_3
y_{1}^{2}	y_{2}^{2}	y_{3}^{2}
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}
$x_{1}^{2}y_{1}$	$x_{2}^{2}y_{2}$	$x_{3}^{2}y_{3}$
$x_1 y_1^2$	$x_2 y_2^2$	$x_{3}y_{3}^{2}$
y_1^{o}	y_2^3	y_3°
x_{1}^{4}	x_{2}^{4}	x_{4}^{4}
$x_1^2 y_1^2$	$x_2^2 y_2^2$	$x_3^2 y_3^2$
$\begin{array}{c} x_1 y_1^3 \\ y_1^4 \end{array}$	$x_2 y_2^3$ y_2^4	$x_3y_3^3$ y_2^4
:	:	:

simplified:

ſ	1	1	1 -	
	$\frac{x_1}{x_1}$	x_2	x_3	$\begin{bmatrix} x_1 \end{bmatrix}$
	$x_1 y_1$	$\frac{g_2}{x_2y_2}$	$\frac{93}{x_3y_3}$	
	x_{1}^{3}	x_2^3	x_3^3	L
l	$x_1^2 y_1$	$x_{2}^{2}y_{2}$	$x_3^2y_3$ -	

' a

 \rightarrow "shift with x" \rightarrow

$\begin{array}{c} x_1\\ x_1^2\\ x_1^2 \end{array}$	$\frac{x_2}{x_2^2}$	$\frac{x_3}{x_3^2}$
$x_1 y_1$	$x_2 y_2$	x_3y_3
$ \begin{array}{c} x_1 y_1 \\ x_1^4 \\ x_1^4 \end{array} $	$x_{2}y_{2} \\ x_{2}^{4}$	$x_{3}y_{3} \\ x_{4}^{4}$
$x_1^3 y_1$	$x_{2}^{3}y_{2}$	$x_{3}^{3}y_{3}$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000		0000	
Setting up an eigenvalue problem in x						

- Finding the x-roots: let $D_x = \operatorname{diag}(x_1, x_2, \ldots, x_s)$, then

$$S_1 KD_x = S_x K,$$

where S_1 and S_x select rows from K w.r.t. shift property

- Realization Theory for the unknown x

Rooting 000	Univariate 000000	Multivariate	Optimization	Some applications	Conclusions
Setting up an eig	genvalue problem in	x			

We have

$$S_1 KD_x = S_x K$$

Generalized Vandermonde \boldsymbol{K} is not known as such, instead a null space

basis Z is calculated, which is a linear transformation of K:

ZV = K

which leads to

$$(S_x Z)V = (S_1 Z)VD_x$$

Here, V is the matrix with eigenvectors, $D_{\boldsymbol{x}}$ contains the roots \boldsymbol{x} as eigenvalues.

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	0000000000000000	000		0000	
Setting up an eigenvalue problem in y						

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)VD_y$$

Some interesting results:

- same eigenvectors V!

-
$$(S_x Z)^{-1}(S_1 Z)$$
 and $(S_y Z)^{-1}(S_1 Z)$ commute
 \implies 'commutative algebra'

		Multivariate	Optimization		Conclusio				
000	000000	0000000000000000	000	00000000	0000				
Rank, nullity and	Rank, nullity and null space: SVD-ize the Macaulay matrix								

Basic Algorithm outline

Find a basis for the nullspace of M using an SVD:

$$M = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}$$

Hence,

MZ = 0

We have

$$S_1 K D = S_{\text{shift}} K$$

with K generalized Vandermonde, not known as such. Instead a basis ${\cal Z}$ is computed as

$$ZV = K$$

which leads to

$$(S_{\text{shift}}Z)V = (S_1Z)VD$$

 S_1 selects linear independent rows; $S_{\rm shift}$ selects rows 'hit' by the shift. KU LEUVEN

 Rooting
 Univariate
 Multivariate
 Optimization
 Some applications
 Conclusions

 000
 000000
 000
 000
 000000000
 000
 000000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

'Mind the Gap' and 'A Bout de Souffle'

KU LEUVEN

- Dynamics in the null space of M(d) for increasing degree d: The index of some of the linear independent rows stabilizes (=affine zeros); The index of other ones keeps increasing (=zeros at ∞).
- 'Mind-the-gap': As a function of d, certain degree blocks become and stay linear dependent on all preceeding rows: allows to count and seperate affine zeros from zeros at ∞
- 'A bout de souffle': Effect of zeros at ∞ 'dies' out (nilpotency).

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions		
000	000000	○○○○○○○○○○●○○	000		0000		
Modelling the null space: singular nD autonomous systems							

• Weierstrass Canonical Form decoupling affine and infinity roots

$$\left(\begin{array}{c|c} v(k+1) \\ \hline w(k-1) \end{array}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right) \left(\begin{array}{c|c} v(k) \\ \hline w(k) \end{array}\right),$$

• Action of A_i and E_i represented in grid of monomials

Roots at Infinity: *n*D Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$\begin{bmatrix} v(k+1) \\ w(k-1) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & E \end{bmatrix} \begin{bmatrix} v(k) \\ w(k) \end{bmatrix}$$

Singular nD Attasi model (for n = 2)

with E_x and E_y nilpotent matrices.

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions		
000	000000	○○○○○○○○○○○○	000		0000		
Modelling the null space: singular nD autonomous systems							

Summary

- Rooting multivariate polynomials
 - = (numerical) linear algebra
 - = (fund. thm. of algebra) \bigcap (fund. thm. of linear algebra)
 - $\bullet\ = nD$ realization theory in null space of Macaulay matrix
- Decisions based upon (numerical) rank
 - Dimension of variety = degree of Hilbert polynomial: follows from corank (nullity);
 - For 0-dimensional varieties ('isolated' roots): corank stabilizes = # roots (nullity)
 - $\bullet\,$ 'Mind-the-gap' splits affine zeros from zeros at $\infty\,$
 - # affine roots (dimension column compression)
- not discussed
 - Multiplicity of roots ('confluent' generalized Vandermonde matrices)
 - Macaulay matrix columnspace based methods ('data driven')

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	000000000000000	●00		0000
Introduction					

Outline

3 Multivariate

6 Conclusions

Rooting 000	Univariate 000000	Multivariate 00000000000000	Optimization ○●○	Some applications	Conclusions 0000
Introduction					

Polynomial Optimization Problems

$$\begin{array}{ll}
\min_{x,y} & x^2 + y^2 \\
\text{s. t.} & y - x^2 + 2x - 1 = 0
\end{array}$$

Lagrange multipliers: necessary conditions for optimality:

$$L(x, y, z) = x^{2} + y^{2} + z(y - x^{2} + 2x - 1)$$

$$\frac{\partial L}{\partial x} = 0 \quad \rightarrow \quad 2x - 2xz + 2z = 0$$

$$\frac{\partial L}{\partial y} = 0 \quad \rightarrow \quad 2y + z = 0$$

$$\frac{\partial L}{\partial z} = 0 \quad \rightarrow \quad y - x^{2} + 2x - 1 = 0$$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	00000000000000	○○●		0000
Introduction					

Observations:

- all equations remain polynomial
- all 'stationary' points (local minima/maxima, saddle points) are roots of a system of polynomial equations
- shift with objective function to find minimum: only minimizing roots are needed !

Let

$$A_x V = V D_x$$

and

$$A_y V = V D_y$$

then find minimum eigenvalue of

$$(A_x^2 + A_y^2)V = V(D_x^2 + D_y^2)$$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	000000000000000	000		0000

Outline

3 Multivariate

6 Conclusions

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000	●0000000		
System Identification: Prediction Error Methods						

- PEM System identification
- Measured data $\{u_k, y_k\}_{k=1}^N$
- Model structure

 $y_k = G(q)u_k + H(q)e_k$

• Output prediction

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k$$

• Model classes: ARX, ARMAX, OE, BJ

 $A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k$

Class	Polynomials
ARX	A(q), B(q)
ARMAX	A(q), B(q),
	C(q)
OE	B(q), F(q)
BJ	B(q), C(q),
	D(q), F(q)

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000	○●○○○○○○	0000	
System Identification: Prediction Error Methods						

• Minimize the prediction errors $y - \hat{y}$, where

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,$$

subject to the model equations

• Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where $A(q) = 1 + aq^{-1}$, $B(q) = bq^{-1}$, $C(q) = 1 + cq^{-1}$, N = 5

$\min_{\hat{y},a,b,c}$	$(y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2$
s.t.	$\hat{y}_5 - c\hat{y}_4 - bu_4 - (c - a)y_4 = 0,$
	$\hat{y}_4 - c\hat{y}_3 - bu_3 - (c-a)y_3 = 0,$
	$\hat{y}_3 - c\hat{y}_2 - bu_2 - (c-a)y_2 = 0,$
	$\hat{y}_2 - c\hat{y}_1 - bu_1 - (c - a)y_1 = 0,$

Rooting

Multivariate

Optimizatio 000 Some applications

Conclusions

Structured Total Least Squares

Static Linear Modeling
 Rank deficiency
minimization problem:
min $ [\Delta A \ \Delta b] _F^2$, s. t. $(A + \Delta A)v = b + \Delta b$, $v^T v = 1$
• Singular Value Decomposition: find (u, σ, v) which minimizes σ^2 Let $M = \begin{bmatrix} A & b \end{bmatrix}$
$\begin{cases} Mv &= u\sigma \\ M^Tu &= v\sigma \\ v^Tv &= 1 \\ u^Tu &= 1 \end{cases}$

Dynamical Linear Modeling

Rank	deficiency
------	------------

minimization problem:

Rooting 000	Univariate 000000	Multivariate 00000000000000	Optimization 000	Some applications	Conclusions
Structured Total	l Least Squares				

$$\begin{split} \min_{v} & \tau^2 = v^T M^T D_v^{-1} M v \\ \text{s. t.} & v^T v = 1. \end{split}$$

 _	_	

method	TLS/SVD	STLS inv. it.	STLS eig
v_1	.8003	.4922	.8372
v_2	5479	7757	.3053
v_3	.2434	.3948	.4535
τ^2	4.8438	3.0518	2.3822
global solution?	no	no	yes

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000		0000	
Maximum Likelihood Estimation: DNA						

CpG Islands

- genomic regions that contain a high frequency of sites where a cytosine (C) base is followed by a guanine (G)
- rare because of methylation of the C base
- hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island

 Rooting
 Univariate
 Multivariate
 Optimization
 Some applications
 Conclusions

 000
 000000
 000
 0000000000
 0000000000
 0000000000

 Maximum Likelihood Estimation:
 DNA

The model

- 4-dimensional state space $[m] = \{A, C, G, T\}$
- $\bullet\,$ Mixture model of 3 distributions on [m]
 - CG rich DNA
 - 2 : CG poor DNA
 - 3 : CG neutral DNA
- Each distribution is characterised by probabilities of observing base A,C,G or T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type	А	C	G	Т
CG rich	0.15	0.33	0.36	0.16
CG poor	0.27	0.24	0.23	0.26
CG neutral	0.25	0.25	0.25	0.25

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000		0000	
Maximum Likelihood Estimation: DNA						

• The probabilities of observing each of the bases A to T are given by

$$p(A) = -0.10 \theta_1 + 0.02 \theta_2 + 0.25$$

$$p(C) = +0.08 \theta_1 - 0.01 \theta_2 + 0.25$$

$$p(G) = +0.11 \theta_1 - 0.02 \theta_2 + 0.25$$

$$p(T) = -0.09 \theta_1 + 0.01 \theta_2 + 0.25$$

- θ_i is probability to sample from distribution $i (\theta_1 + \theta_2 + \theta_3 = 1)$
- Maximum Likelihood Estimate:

$$(\hat{ heta_1}, \hat{ heta_2}, \hat{ heta_3}) = rg\max_{ heta} \ l(heta)$$

where the log-likelihood $l(\theta)$ is given by

$$l(\theta) = 11 \log p(A) + 14 \log p(C) + 15 \log p(G) + 10 \log p(T)$$

• Need to solve the following polynomial system

$$\frac{\partial l(\theta)}{\partial \theta_1} = \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_1} = 0$$
$$\frac{\partial l(\theta)}{\partial \theta_2} = \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_2} = 0$$

ization

Some applications

Conclusions 0000

Maximum Likelihood Estimation: DNA

Solving the Polynomial System

- $\operatorname{corank}(M) = 9$
- Reconstructed Kernel

	1	1	1	1		1
	0.52	3.12	-5.00	10.72		θ_1
	0.22	3.12	-15.01	71.51		θ_2
K =	0.27	9.76	25.02	115.03		θ_1^2
	0.11	9.76	75.08	766.98		$\theta_1 \theta_2$
	÷	÷	÷	÷	÷	÷
	_				_	

- θ_i 's are probabilities: $0 \le \theta_i \le 1$
- Could have introduced slack variables to impose this constraint!
- Only solution that satisfies this constraint is $\hat{\theta} = (0.52, 0.22, 0.26)$

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions	
000	000000	00000000000000	000		0000	
And Many More						

Applications are found in

- Polynomial Optimization Problems
- Structured Total Least Squares
- H_2 Model order reduction
- Analyzing identifiability of nonlinear model structures (differential algebra)
- Robotics: kinematic problems
- Computational Biology: conformation of molecules
- Algebraic Statistics
- Signal Processing
- nD dynamical systems; Partial difference equations

• . . .

Rooting 000	Univariate 000000	Multivariate 000000000000000	Optimization 000	Some applications	Conclusions

Outline

- 2 Univariate
- 3 Multivariate
- Optimization
- **5** Some applications

6 Conclusions

Rooting	Univariate	Multivariate	Optimization	Some applications	Conclusions
000	000000	00000000000000	000		●000
Conclusions					

- Finding roots: linear algebra and realization theory!
- Polynomial optimization: extremal eigenvalue problems
- (Numerical) linear algebra/systems theory translation of algebraic geometry/symbolic algebra
- Many problems are in fact eigenvalue problems !
 - Algebraic geometry
 - System identification (PEM)
 - Numerical linear algebra (STLS, affine EVP $Ax = x\lambda + a$, etc.)
 - Multilinear algebra (tensor least squares approximation)
 - Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
 - Differential algebra (Glad/Ljung)
- Projecting up to higher dimensional space (difficult in low number of dimensions; 'easy' (=large EVP) in high number of dimensions)

Rooting 000	Univariate 000000	Multivariate 00000000000000	Optimization 000	Some applications	Conclusions
Conclusions					

Current work:

- Subspace identification for spatially-temporarilly correlated signals (partial difference equations)
- Modelling in the era of IoT (Internet-of-Things) with its tsunami of data: in space and time (e.g. trajectories over time); or e.g. in MSI (mass spectrometry imaging): spectrum (1D) per space-voxel (3D) over time (1D) = 5D-tensor. How to model ?
- Example: Advection diffusion equation space-time with input-output data:

Rooting 000	Univariate 000000	Multivariate 00000000000000	Optimization 000	Some applications	Conclusions	
Research on Three Levels						

Conceptual/Geometric Level

- Polynomial system solving is an eigenvalue problem!
- Row and Column Spaces: Ideal/Variety \leftrightarrow Row space/Kernel of M, ranks and dimensions, nullspaces and orthogonality
- Geometrical: intersection of subspaces, angles between subspaces, Grassmann's theorem,...

Numerical Linear Algebra Level

- Eigenvalue decompositions, SVDs,...
- Solving systems of equations (consistency, nb sols)
- QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

- Modified Gram-Schmidt (numerical stability), GS 'from back to front'
- Exploiting sparsity and Toeplitz structure (computational complexity $O(n^2)$ vs $O(n^3)$), FFT-like computations and convolutions,...
- Power method to find smallest eigenvalue (= minimizer of polynomial optimization problem)

Rooting Univariate Multivariate Optimization
000 000000 00000000000 000

Some applications

Conclusions

"At the end of the day, the only thing we really understand, is linear algebra".

Sculpture by Joos Vandewalle

Anders 'free will' Lindquist

Ad multos annos !!

A variety in algebraic geometry

